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Abstract. I construct a well-defined expansion in ε = 2−d for diffusion processes on small-world networks.
The technique permits one to calculate the average over disorder of moments of the Green’s function, and
is used to calculate the average Green’s function and fluctuations to first non-leading order in ε, giving
results which agree with numerics. This technique is also applicable to other problems of diffusion in
random media.

PACS. 89.75.Hc Networks and genealogical trees 64.60.Ak Renormalization-group studies of phase
transitions

1 Introduction

The small-world network [1] has served as a fundamental
model in the field of networks [2]. However, the problem of
averaging over the possible different random connections
in the small-world network is severe in low dimensions: a
study [3] of the properties of even the simple problem of
diffusion on the one-dimensional network leads to a diffi-
cult problem that, thus far, has only been tackled approx-
imately.

The physical reason for this problem is a breakdown
of mean-field theory [4] in dimensions d less than two,
and the emergence of strong site-to-site fluctuations of
the Green’s function, so that the properties of the system
cannot be represented by simply studying the average.
However, this opens the possibility of perturbing in ε =
2 − d, as will be shown in this paper.

The small-world network is constructed by starting
with a regular lattice in d-dimensions. Then, some set
of long-range links are added: a given pair of sites i, j
is connected with probability pad/V , where V is the total
number of sites in the system. Here, we define a length a
as the lattice scale, and p as the density of links. Then,
as V → ∞, each site has a Poisson distribution of links
emanating from it, with on average pad links. Typically,
the links, if any, leaving a given site will connect that site
to other sites far away in the system.

Looking for universal results, we consider the case of a
low density of links, pad � 1. Ignoring sample-to-sample
fluctuations, the natural mean-field system to consider is
one in which each site is coupled to all others with a
strength ∼ p/V . This leads to a solvable problem with
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a correlation length ξ ∝ p−1/2, or a correlation volume
ξd ∝ p−d/2. Returning to the original problem with fixed
links, we see that such a volume has p1−d/2 links in it, and
as p → 0, this number of links tends to zero for p ≤ 2. This
is a major problem. Mean-field theory ignores fluctuations
in the number of links, which is only justified if the num-
ber of links is large, a condition which is not satisfied in
this case for d < 2. This problem is a result of a violation
of the modified Harris criterion introduced in [5].

Instead, we expect that the correlation length for the
average Green’s function must be at least p−1/d for small
p, so that there is on average at least one link in a correla-
tion volume. We will see below that the correlation length
is in fact proportional to p−1/d in this limit, and the ε-
expansion will enable us to calculate the prefactor, as well
as to study fluctuations about the average. Given a p−1/d

scaling of the correlation length, the number of links in
a correlation volume is some p-independent number. The
basis for the ε-expansion is the observation that, within
a self-consistent approximation, this number diverges as
1/ε, so that fluctuations about a self-consistent mean-field
can be calculated diagrammatically as done below.

2 Green’s function

Our general problem is to study diffusion on the small-
world network. Thus, we must calculate Green’s functions
of the following problem: ∂tρi(t) = −∑

j Γijρj , where
ρi(t) is the probability of finding some randomly walking
particle at site i and Γ is the Laplacian on the small-world
network. We take

Γ = Γ 0 + qU. (1)
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Here, Γ 0
ij is the Laplacian on the regular part of the net-

work. Γ 0
ij = −a−2 if i and j are neighboring sites on the

regular network, while Γ 0
ii is equal to a−2 times the co-

ordination number of site i. Uij is the Laplacian on the
long-range links. Uij = −1 if i, j are connected by a long-
range link, where Uii is equal to the number of long-range
links leaving site i.

We have inserted an extra factor of q multiplying the
matrix U in equation (1). If q is small and p is large, this
implies that we have a high density of weak links and the
problem can be solved via a mean-field theory in which
we ignore the fluctuations in the local density of links.
However, we will be interested in the opposite case, where
q is of order 1, while p is small.

Fourier transforming, we are interested in the Green’s
function (iω + Γ )−1. This function contains all of the in-
formation about the diffusion of the particle on the net-
work. However, we will focus on the case ω → 0, which
corresponds to long-time behavior. The matrix Γ has a
single zero mode, due to the conservation of

∑
i ρi by

the diffusion process. Throughout, we will work in the
subspace orthogonal to this zero mode, defining G =
limω→0(iω + Γ )−1 and G0 = limω→0(iω + Γ 0)−1 in this
subspace. This Green’s function is related to the return
probability of a random walker, and also to the rough-
ness of a surface defined by Edwards-Wilkinson dynamics
on the network [4]. We will compute Gij , where the line
denotes averaging over the ensemble of different random
networks, as well as computing higher moments such as
GijGkl.

For p small (compared to a−d), the length p−1/d is
much larger than the lattice scale, so that we can take a
continuum limit, setting Γ 0 equal to the continuum Lapla-
cian ∂2. In the limit of small p, the probability of a single
site having more than one link becomes vanishingly small.
This continuum limit leads to ultraviolet divergences for
d ≥ 2, which are cutoff at the lattice scale a. However,
for d < 2, this limit is completely convergent, and thus
for d < 2 we find universal results, independent of the lat-
tice details. This use of a continuum limit is essential to
continue the results to arbitrary real dimension d < 2.

For clearer notation, in the continuum limit we will of-
ten use d-dimensional vectors x, y, ... to label lattice sites,
rather than indices i, j, ... We write G(x, y) to denote a
Green’s function between points x, y and G(x) to denote
a Green’s function G(x, 0) (the averaging restores trans-
lational symmetry). We also use a vector k to label mo-
menta, defining the averaged Green’s function at Fourier
mode k to be G(k) =

∫
ddxG(x) exp(ik ·x). We use a simi-

lar notation for other matrices in the continuum limit. Dis-
crete δ-functions get replaced by Dirac δ-functions, while
sums get replaced by integrals.

Ignoring fluctuations in the local density of links, the
mean-field approximation consists of replacing U by U , so
in the continuum limit G ≈ (∂2 + U)−1. Then, we find
that U(x, y) = pqδ(x − y) − pq/V . This gives a Green’s
function G(x) =

∫
ddk(2π)−d exp(ik · x)(k2 + pq)−1. The

correlation length is (pq)−1/2 as discussed above, and thus

this expansion must breakdown for d < 2 in the limit of
small p at fixed q.

3 Self-consistent calculation

To go beyond the mean-field calculation, we use impurity-
averaged perturbation theory [6], following [4]. We con-
tinue with lattice notation here, since this development
is not specific to the continuum limit. The perturbative
expansion of G in powers of U is G = G0 − G0UG0 +
G0UG0UG0 − ..., where a product of matrices is im-
plied. Each of the terms in this expansion can be com-
puted using the given distribution of disorder. The mean-
field calculation is based on the following approximation:
G ≈ (Γ 0 +U)−1 = G0−G0UG0 +G0UG0UG0− ... These
two expansions are equal at zeroth and first order in U ,
but differ at second order in U , by an amount depending
on the second cumulant of U .

It is useful to introduce a diagrammatic notation for
the perturbative calculations, as shown in Figure 1. We use
a single solid line to denote G0, and a double solid line to
denote G. We use a cross with no dashed lines attached to
denote the average U ii. A pair of crosses connected by a
dashed line is used to denote an average UiiUjj −Uii Ujj .
Three or more crosses connected by dashed lines are used
to denote the third and higher cumulants. These diagrams
denote two, three, or more scatterings of a single link. Cir-
cles are used to denote averages of off-diagonal terms, Uij

for i 	= j. Dashed lines can also connected both circles and
crosses, again denoting higher cumulants. Within this di-
agrammatic approximation, the weight of a given diagram
is equal to pnl(−q)ns . Here nl is equal to the number of
sets of circles or crosses connected by dashed lines, while
ns is equal to the total number of circles plus crosses.
Thus, each link gives one factor of p (the probability of
finding a link) multiplied by −q to the number of times
that link appears in U .

We note that a single circle, not connected by a dashed
line, denotes Uij , which vanishes as V → ∞, and thus may
be ignored in this perturbation expansion. In general, any
diagram involving an odd number of off-diagonal terms
for a given link vanishes as V → ∞.

Let us return to the continuum limit for specific cal-
culations. We introduce the self-energy Σ(k) by setting
G(k) = [Γ 0 +Σ(k)]−1, as shown diagrammatically in Fig-
ure 1a. Approximating Σ to leading order in U we get
Σ(k) = U(k). We have Σ(0) = 0, However, for all k 	= 0,
Σ(k) is k-independent, so that, outside of the subspace
of the zero mode, we may write Σ(k) = Σ = pq. We
now compute corrections to this result, to second order
in U . To this order, Σ(k) is still k-independent for k 	= 0.
This self-consistent Born approximation is defined by the
first three diagrams on the right-hand side of Figure 1b.
Higher diagrams of Figure 1b include all diagrams with
arbitrary numbers of scatterings off a single link. We self-
consistently use double lines for the Green’s function in
Figure 1b, giving Σ = pq − 2pq2G(0), where

G(0) =
∫

ddk

(2π)d

1
k2 + Σ

. (2)
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b)

++ +...

= Σ−a)

Σ = + + + +

Fig. 1. a) Diagrammatics for Σ and b) self-consistent sum of
interactions with a single link.

For d < 2, the integral of equation (2) is convergent, and
equal to

πd/2

(2π)d
Σd/2−1Γ (1 − d/2). (3)

The self-consistent Born approximation at second order
in U then becomes Σ = pq − 2pq2G(0). As a first guess
at solving this equation, we substitute the first order re-
sult for Σ in the equation for G(0), getting Σ = pq −
2pd/2qd/2+1πd/2Γ (1−d/2)/(2π)d for d < 2. The second or-
der correction is comparable to the first when q ∼ p2/d−1.
Thus, for q � p2/d−1, perturbation theory may be applied.
We will be interested in the opposite limit of p small at
fixed q so that q 
 p2/d−1 and perturbation theory breaks
down for d < 2.

A better approximation for Σ is to include all diagrams
in Figure 1b, summing all diagrams involving interactions
with a single link. Since we are interested in the case in
which the density of links is small, but the scattering q off
a single link is of order unity, we sum all scatterings off a
single link. This gives Σ = pq/[1+2qG(0)]. For p small, we
will find G(0) 
 1, so that we can take Σ = pq/[2qG(0)] =
p/[2G(0)]. Here, the factor of two arises from the different
possible diagonal and off-diagonal scatterings off a single
link: if a particle interacts with a given link n times, then
there are 2n−1 total diagrams contributing to Σ. Using
equation (3) for G(0), we find for d < 2 that the solution
of Σ = p/[2G(0)] is Σ =

Σ0 = [(2π)dp/(2πd/2Γ (1 − d/2)]2/d. (4)

We have placed the subscript 0 on Σ, since later this result
will be used as a zero order approximation, with correc-
tions to it in powers of ε. This gives Σ ∝ p2/d, so that the
correlation length varies as p1/d. We will find below that
a more careful treatment leads to universal corrections in
orders of ε to the prefactor of equation (4), but does not
change the scaling with p.

In contrast, for d > 2, the integral of equation (2) is
divergent at large k, but it converges at small k even for
Σ = 0. The divergence at large k is cut off by the lattice
scale, a. Thus, G(0) has a well-defined limit as Σ → 0;
this limit has a non-universal dependence on the lattice
details and is equal to some number, g. The self-consistent
equation becomes Σ = pq/[1 + 2qG(0)]. To leading order
in p, the solution of this equation gives Σ = pq/(1 + 2qg).
The magnitude of the corrections to the mean-field result,

Σ = pq, depends on the product qg and does not have any
universal behavior. There are also further corrections to
the mean-field result which involve scattering off multiple
links. These corrections will not be considered here.

Finally, consider d = 2. In this case, we will show below
that the approximation above leads to exact results for
the small p behavior of Σ. The integral of equation (2) is
logarithmically divergent. The divergence is cut off at a k
of order a−1, giving G(0) = −(2π)−1 log(aΣ1/2). The self-
consistent equation then gives Σ = pq/[1+2qG(0)]. As for
d < 2, G(0) 
 1 for small p so that this reduces to Σ =
p/[2G(0)] = −2πp/ log(a2Σ). Solving this self-consistent
equation for a2p � 1 gives Σ = −2πp/ log(pa2), plus
subleading terms.

4 Corrections in two dimensions
and renormalization group

Thus far, the calculation has followed [4]. Now, however,
we go beyond the self-consistent calculation to obtain an
expansion in ε. The first step is to analyze the behavior
for d = 2 in more detail, and show that the results above
are exact for the leading scaling of Σ with p. In the next
section, a diagrammatic perturbation expansion will be
presented to compute results in powers of ε.

In d = 2, the correlation volume is of order 1/Σ.
The physical motivation for the results below is that for
Σ ∼ −p/ log(pa2), the average number of links in a cor-
relation volume, p/Σ, is of order − log(pa2). Thus, the
average number of links in a correlation volume diverges
as p → 0. This, however, is exactly the condition we need
to make mean-field theory work, as it enables us to ignore
fluctuations in the number of links.

Turning away from perturbation theory, we now con-
sider the problem scale-by-scale, starting with the short-
est distances. We begin with a physical description of the
problem, followed by a more careful calculation below. On
length scales l � p−1/d, each link can be considered in-
dependently, since the density of links at such scales is
very small: the probability of finding a link near any other
link is negligible. Solving the problem of a single link at
a scale l is very similar to the calculation done above.
We must sum multiple scatterings off the single link. This
will renormalize the interaction strength of the link from
q to q/[1 + 2qGl(0)], where Gl(0) ∼ (2π)−1 log(l/a) is the
Green’s function of matrix Γ 0 at scale l. Any function
which cuts off momenta less than l−1 will suffice for Gl.
We choose Gl(k) = (k2 + l−2)−1. Then, once we reach
scale l = p−1/2, the link interaction strength has been
renormalized to qren = q/[1 + 2qGl(0)] ∼ −2π/ log(pa2).

The number of links in an area of size a2 was pa2. In
contrast, on the new scale l = p−1/2, the number of links
in area l2 is of order unity, while the scattering strength
qren is small, and thus corrections to mean-field theory
become negligible for small p. Then, we find Σ = pqren =
−2πp/ log(pa2).
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5 Expansion in ε

Now, we wish to compute quantities for d < 2. In this case,
we find that once we reach a scale l ∼ p−1/d, the link in-
teraction strength qren has been reduced to an amount of
order q/[1+2qGl(0)] ∼ εl−ε. Unlike the case in two dimen-
sions, qren does not vanish as we take the limit pad → 0.
However, we will find that the interaction strength of the
links is of order ε, so that corrections to mean-field theory
can be computed in powers of ε. The ε-expansion is de-
fined by a simple re-ordering of diagrams. First, note that
equation (4) defines a length scale l by

l = Σ
−1/2
0 = [(2π)dp/(2πd/2Γ (1 − d/2)]−1/d. (5)

so Gl(k) = (k2 +Σ)−1. Then, we define the resummed di-
agonal scattering off a single link as in Figure 2a, denoted
by a cross with double dashed lines. Here, the single line
denotes the Green’s function Gl, rather than G0 as before
(this resummation is closely related to the T -matrix in
scattering theory). The resummed off-diagonal scattering
is defined similarly by a circle with double dashed lines.

The starting point for the ε-expansion is the self-
consistent calculation of equation (4). That expansion re-
sums a large set of diagrams known as the “rainbow” di-
agrams; this is the set of all diagrams except those in
which a particle first scatters off one link, then off a sec-
ond, then returns to the first link, and then returns to
the second link (possibly with additional scatterings off
other links included). We now present an expansion for G
which exactly includes all of the missing diagrams, such as
in Figure 2c, with the correct coefficient, using resummed
scatterings with each link. We then show that this leads
to an expansion in powers of ε.

First, write down all possible diagrams, using Gl for
the Green’s functions and double dashed lines for interac-
tions with links, subject to the following two constraints:
(1) double dashed lines must always connect at least two
crosses or circles. That is, single crosses or circles never
appear individually, so the first diagram of Figure 2b is
not allowed. This constraint on diagrams is included be-
cause such diagrams are already taken into account in the
self-consistent expansion, by the replacement of G0 by Gl.
(2) two successive interactions with links must always in-
volve different links (links not connected by dashed lines),
so that the second diagram of Figure 2b is also not al-
lowed. The second constraint is presented to avoid over-
counting multiple scatterings. Given these constraints, the
leading correction to the averaged Green’s function is
given by Figure 2c. Each diagram is assigned a factor
of pnl(−qren)ns , where nl is now the number of sets of
circles and crosses connected by double dashed lines and
ns is again the total number of circles and crosses. Here,
qren = q/[1 + 2qGl(0)] = Σ0/p.

This expansion, though it simply reorders the dia-
grams, perfectly realizes the desired treatment of the prob-
lem scale-by-scale. We must start with the shortest scales.
However, at the shortest scales, the only processes involve
multiple scattering off single links; only when the scale
becomes of order p−1/d do processes with multiple links

c)

= + + + +...

b)

a)

+...+=
d)

Fig. 2. a) Definition of resummed scattering. b) Disallowed
diagrams. c) Leading corrections to G. d) Leading contribution
to GG − G G. For all diagrams, single line denotes Gl in this
figure.

become important. Thus, we resum scattering off the sin-
gle link, up to the scale l. Unlike the case for d = 2,
processes involving multiple links, such as that shown in
Figure 2c, are no longer vanishing, but we now show that
they are higher order in ε. First, it is convenient to rescale
all distances by l. Then, we set x̃ = x/l, k̃ = kl. We
use the Green’s function G1(k) = (k2 + 1)−1, and define
p̃ = pld, while q̃ren = qrenl2−d. Then, we define G̃(x̃) by
G(x) = G̃(x̃)l2−d. Then, the perturbation expansion for
G̃ is obtained by using the same set of diagrams as above,
but replacing p by p̃, qren by q̃ren, and Gl by G1. Now, we
have

p̃ = 2πd/2Γ (1 − d/2)/(2π)d = ε−14πd/2/(2π)d + ..., (6)

q̃ren = p̃−1 = ε(2π)d/(4πd/2) + ...,

where here we have given a series expansion of the results
for p̃, q̃ren, and the ... denote higher order terms in ε. Thus,
we have defined a new problem of scattering with links of
strength ε and density ε−1; this a problem of a high density
of weak links so that perturbative techniques work well
and lead to an expansion in ε. Physically, one can imagine
that for d close to two, a randomly diffusing particle has
only a weak interaction with a link: the dimension of the
path of the particle is two, so that for d close to two the
particle can easily “miss” a given link.

There are a finite number of diagrams at each order
in ε as we now show. The number of scatterings of each
link is at least two by the rules above, so ns ≥ 2nl. Then,
p̃nl q̃ns

ren ∼ εns−nl is at least order εnl . Thus, to order εn,
we need only consider diagrams nl ≤ n. For a given nl,
we need only consider diagrams with ns ≤ n + nl, leaving
us with only a finite number of diagrams at each order in
ε. It is important to consider the possibility of ultraviolet
divergences in two dimensions, since they may give extra
factors of ε−1. However, the only ultraviolet divergences in
two dimensions in this expansion arise from Green’s func-
tions G1(0) and this expansion resums all such divergent
diagrams which involve scattering off at least one link: the
only divergent contribution to G(0) is from the very first
diagram in Figure 2c. Finally, to all orders in ε, the scal-
ing of G(0) with p is unchanged from the self-consistent
calculation.
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We now use this formalism to compute specific results.
We first compute the average Green’s function. From Fig-
ure 2c, we have G(0) = l2−d[G1(0) + p̃2q̃4

ren

∫ ∫
ddxddy

G1(x)G1(y)G1(x − y)3 + ...]. We have numerically eval-
uated this integral in d = 2 to get the leading correc-
tions in ε (to simplify this integral, we used the trick that
it equals −(1/4)∂l

∫
d2xGl(x)4 at l = 1). The result is

G(0) = l2−d[G1(0) + ε2π2(.00106...) + ...], where we have
also evaluated p̃, q̃ren for d = 2, and where l is given by
equation (5). Here, G1(0) = πd/2/(2π)dΓ (1 − d/2) and
hence diverges as ε−1. As noted above, this is the only
ultraviolet divergent diagram.

To go to higher order in ε, it would be necessary to keep
additional diagrams, as well as to expand the integrals in
powers of ε near d = 2. Since we are interested in d = 1, let
us first evaluate Figure 2c in d = 1, where p̃ = q̃ren = 1,
so

G(0) = p−1

[

G1(0)+
∫∫

dxdyG1(x)G1(y)G1(x − y)3+...

]

= p−1(1/2 + 5/256 + ...). (7)

At higher order, if we evaluate all diagrams in d = 1, but
use the ε expansion to define the ordering of diagrams
for us, all the diagrammatic integrals can be performed
exactly, since G1(x) then has a simple exponential decay.
This is a task left for future work, as is a test of the conver-
gence properties of this expansion. Equation (7) compares
well with numerics [4]. There, G(0) was found to scale p−1,
with a prefactor slightly larger than 1/2, close to the re-
sult here; comparison of the exact difference between the
prefactor and 1/2 would require higher order calculations
here and larger system sizes in the numerics.

Fluctuations in the Green’s function can also be com-
puted using these techniques. From Figure 2d, we have
G(0)2−(G(0))2 = p−2(

∫
dxG1(x)4 + ...) = p−2(1/32+ ...).

6 Discussion

We have presented an ε-expansion for the properties of the
small-world network in d = 2 − ε dimensions, enabling us
to compute averages of moments of the Green’s function.
This technique should, however, have much greater gener-
ality. In [5], general criteria were put forth for the break-
down of mean-field theory for any statistical mechanical
system on a small-world network, in analogy to the usual

Harris criterion for disordered systems [7]. Hopefully, for
other systems in which these criteria are violated, it will
be possible to provide an ε expansion near the critical
dimensionality, analogous to what has been done for the
violation of the ordinary Harris criterion [8].

These criteria can be extended to other problems than
networks, such as a randomly diffusing particle in an array
of traps [9], a model inspired by work in reaction-diffusion
processes [10]. The criteria [5] correctly predict d = 2 as
the region for the breakdown of mean-field theory, and the
techniques here can be used to compute average properties
of the Green’s function in d = 2. For the random trap
system in d = 1 with p � q, the particle has only a
small probability to pass through one trap to reach the
next trap which is typically far away. This makes the trap
system very far from mean-field theory and suggests that
the ε-expansion will not converge to ε = 1; however, it also
enables the solution of the d = 1 system by considering
each interval between traps independently. In contrast, for
the network, the particle can interact with several links,
even for p → 0, thus suggesting that the perturbative ε-
expansion may work for the small-world case. A true test
will require evaluation of additional higher order diagrams
and is left for future work.
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